Document 1531223.1 https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

ORACLE" My ORACLE SUPPORT for EMPLOYEES PowerView is Off ‘ VJ @ Carl (Available) + Profile [E8(0) Help
| Knowledge _Authoring | HealthPlan | KM Reports More... w W @' A | Advanced
7 OS Watcher User's Guide (Doc ID 1531223.1) ¥ To Bottom
ORACLE

‘ > | Document Details ‘
Center of Expertise
Center of Expertise ‘ N e ‘

‘ >| Information Centers ‘

OSWbb ‘ >| Document References ‘

‘ >| Recently Viewed ‘

OS Watcher User's Guide

Carl Davis
Center of Expertise
September 8, 2014

OSWatcher now provides an analysis tool oswbba which analyzes the log files produced by OSWatcher.
This tool allows OSWatcher to be self-analyzing. This tool also provides a graphing capability to graph
the data and to produce a html profile. See the "Graphing and Analyzing the Output" section below.

To collect database metrics in addition to OS metrics consider running LTOM. To see an example of your
system profiled with LTOM click here..

Contents

o Introduction
e QOverview

e Supported Platforms

e Gathering Diagnostic Data

¢ Installing oswbb

¢ Uninstalling oswbb

e Setting up oswbb

o Starting oswbb

¢ Stopping oswbb
¢ Diagnostic Data Output

e oswiostat

e oswmpstat
¢ oswnetstat
¢ oswprvtnet
¢ oswifconfig
® Oswps

e oswtop

1of 18 9/8/2014 3:15 PM

Document 1531223.1 https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

e oswvmstat

Graphing and Analyzing the Output

Known Issues

Download

Reporting Feedback

Sending Files To Support

Introduction

OSWatcher (oswbb) is a collection of UNIX shell scripts intended to collect and archive operating system
and network metrics to aid support in diagnosing performance issues. OSWatcher operates as a set of
background processes on the server and gathers OS data on a regular basis, invoking such Unix utilities
as vmstat, netstat and iostat. OSWatcher can be downloaded from this note. OSWatcher is also included
in the RAC-DDT script file, but is not installed by RAC-DDT. For more information on RAC-DDT see
RAC-DDT User Guide. OSWatcher is installed on each node where data is to be collected. Installation
instructions for OSWatcher are provided in this user guide.

Back to Contents
Overview

OSWatcher consists of a series of shell scripts. OSWatcher.sh is the main controlling executive, which
spawns individual shell processes to collect specific kinds of data, using Unix operating system
diagnostic utilities. Control is passed to individually spawned operating system data collector processes,
which in turn collect specific data, timestamp the data output, and append the data to pre-generated and
named files. Each data collector will have its own file, created and named by the File Manager process.

Data collection intervals are configurable by the user, but will be uniform for all data collector processes
for a single instance of the OSWatcher tool. For example, if OSWatcher is configured to collect data once
per minute, each spawned data collector process will generate output for its respective metric, write data
to its corresponding data file, then sleep for one minute (or other configured interval) and repeat.
Because we are collecting data every minute, the files generated by each spawned processes will
contain 60 entries, one for each minute during the previous hour. Each file will contain, at most, one hour
of data. At the end of each hour, File Manager will wake up and copy the existing current hour file to an
archive location, then create a new current hour file.

The File Manager ensures only the last N hours of information are retained, where N is a configurable
integer defaulting to 48. File Manager will wake up once per hour to delete files older than N hours. At
any time, the entire output file set will consist of one current hour file, plus N archive files for each data
collector process.

stopOSWbb.sh will terminate all processes associated with OSWatcher, and is the normal, graceful
mechanism for stopping the tool's operation.

OSWatcher invokes these distinct operating system utilities, each as a distinct background process, as
data collectors. These utilities will be supported, or their equivalents, as available for each supported
target platform.

ps

top

ifconfig

mpstat

iostat

netstat

traceroute

vmstat

meminfo (Linux Only)
slabinfo (Linux Only)

Back to Contents

20f 18 9/8/2014 3:15 PM

Document 1531223.1

3of 18

Supported Platforms

OSWatcher is certified to run on the following platforms:

o AlX

e Solaris
e HP-UX
e Linux

Back to Contents

Gathering Diagnostic Data
Back to Contents
Installing oswbb

OSWatcher needs to be installed on each node, one installation per node. OSWatcher should be installed
manually by using the following procedure:

NOTE: OSWatcher is available through MOS and can be downloaded as a tar file. The user
then copies the file oswbb.tar to the directory where oswbb is to be installed and issues the
following commands.

tar xvf oswbb.tar

A directory named oswbb is created which houses all the files associated with oswbb. OSWatcher is now
installed.

Back to Contents

Uninstalling oswbb

To de-install OSWatcher issue the following command on the oswbb directory.

rm -rf oswbb

Back to Contents

Setting up oswbb

OSWatcher collects data and stores it to log files in an archive directory. By default, this directory is
created under the oswbb directory where oswbb is installed. There are 2 options if you want to change
this location to point to any other directory or device. 1. set the UNIX environment variable
oswbb_ARCHIVE_DEST to the location desired before starting the tool or 2. start oswbb by running the
startOSWbb.sh script located in the directory where oswbb is installed. This script accepts an optional 4th
parameter which is the location where you want oswbb to write the the data it collects. If you use the
optional 4th parameter you must also set the optional 3rd parameter which specifies the name of a
compress or zip(gzip,compress, etc) utility. If you do not want to compress the files you can specify
NONE as the 3rd parameter. See the startOSWbb.sh for more details. Once oswbb is installed, scripts
have been provided to start and stop the oswbb utility. When oswbb is started for the first time it creates
the archive subdirectory, either in the default location under the oswbb directory or in an alternate location
as specified above. The archive directory contains a minimum of 7 subdirectories, one for each data
collector. Data collectors exist for top, vmstat, iostat, mpstat, netstat, ps, top, ifconfig and an optional
collector for tracing private networks. If you are running Linux, 2 additional directories will exist:
oswmeminfo and oswslabinfo. To turn on data collection for private networks the user must create an
executable file in the oswbb directory named private.net. An example of what this file should look like is
named Exampleprivate.net with samples for each operating system: solaris, linux, aix, hp, etc. in the
oswbb directory. This file can be edited and renamed private.net or a new file named private.net can be
created. This file contains entries for running the traceroute command to verify RAC private networks.

https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

9/8/2014 3:15 PM

Document 1531223.1 https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

Exampleprivate.net entry on Solaris:

traceroute -r —-F nodel
traceroute -r -F node2

Where node1 and node2 are 2 nodes in addition to the hostnode of a 3 node RAC cluster. If the file
private.net does not exist or is not executable then no data will be collected and stored under the
oswprvtnet directory.

oswbb will need access to the OS utilities: fop, vmstat, iostat, mpstat, netstat, and fraceroute. These OS
utilities need to be install on the system prior to running oswbb. Execute permission on these utilities
need to be granted to the user of oswbb.

Back to Contents

Starting oswbb

To start the oswbb utility execute the startOSWbb.sh shell script from the directory where oswbb was
installed. This script has 2 arguments which control the frequency that data is collected and the number
of hour's worth of data to archive.

ARG1 = snapshot interval in seconds.

ARG2 = the number of hours of archive data to store.

ARG3 = (optional) the name of a compress utility to compress each file automatically after it is
created.

ARG4 = (optional) an alternate (non default) location to store the archive directory.

If you do not enter any arguments the script runs with default values of 30 and 48 meaning collect data
every 30 seconds and store the last 48 hours of data in archive files.

Example 1: This would start the tool and collect data at default 30 second intervals and log the last 48
hours of data to archive files.

./startOSWbb.sh

Example 2: This would start the tool and collect data at 60 second intervals and log the last 10 hours of
data to archive files and automatically compress the files.

./startOSWbb.sh 60 10 gzip

Example 3: This would start the tool and collect data at 60 second intervals and log the last 10 hours of
data to archive files, compress the files and set the archive directory to a non-default location.

./startOSWbb.sh 60 10 gzip /u02/tools/oswbb/archive

Example 4: This would start the tool and collect data at 60 second intervals and log the last 48 hours of
data to archive files, NOT compress the files and set the archive directory to a non-default location.

./startOSWbb.sh 60 48 NONE
/u02/tools/oswbb/archive

Example 5: This would start the tool, put the process in the background, enable to the tool to continue
running after the session has been terminated, collect data at 60 second intervals, and log the last 10
hours of data to archive files.

nohup ./startOSWbb.sh 60 10 &

4 of 18 9/8/2014 3:15 PM

Document 1531223.1 https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

50f 18

Back to Contents

Stopping oswbb

To stop the oswbb utility execute the stopOSWbb.sh command from the directory where oswbb was
installed. This terminates all the processes associated with the tool.

Example:

. /stopOSWbb. sh

Back to Contents

Diagnostic Data Output

As stated above, when oswbb is started for the first time it creates the archive subdirectory under the
oswbb installation directory. The archive directory contains a minimum of 7 subdirectories, one for each
data collector. These directories are named oswiostat, oswmpstat, oswnetstat, oswifconfig, oswprvtnet,
oswps, oswtop, and oswvmestat. If you are running Linux, 2 additional directories will exist: oswmeminfo
and oswslabinfo. If you create a private.net file, then an additional directory named oswprvtnet will be
created which stores the results of running traceroute on the rac private interconnects specified in
private.net.

One file per hour will be generated in each of the OSWatcher utility subdirectories A new file is created at
the top of each hour during the time that oswbb is running. The file will be in the following format:

<node name> <OS utility> YY.MM.DD.HH24.dat

Details about each type of data file can be viewed by clicking on the below links:

oswiostat

oswmpstat
oswnetstat
oswprvtnet
oswifconfig
oswps

oswtop
oswvmstat

Back to Contents

oswiostat
<node_name>_iostat_YY.MM.DD:HH24.dat

These files will contain output from the 'iostat' command that is obtained and archived by OSWatcher at
specified intervals. These files will only exist if 'iostat' is installed on the OS and if the oswbb user has
privileges to run the utility. Please keep in mind that what gets reported in iostat may be different
depending upon you platform. You should refer to your OS iostat man pages for the most accurate up to
date descriptions of these fields

The iostat command is used for monitoring system input/output device loading by observing the time the
physical disks are active in relation to their average transfer rates. This information can be used to
change system configuration to better balance the input/output load between physical disks and
adapters.

The iostat utility is fairly standard across UNIX platforms, but really on useful for those platforms that
support extended disk statistics: AlX, Solaris and Linux. Also each platform will have a slightly different
version of the iostat utility. You should consult your operating system man pages for specifics. The

9/8/2014 3:15 PM

Document 1531223.1 https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

6 of 18

sample provided below is for Solaris.

oswbb runs the iostat utility at the specified interval and stores the data in the oswiostat subdirectory
under the archive directory. The data is stored in hourly archive files. Each entry in the file contains a
timestamp prefixed by *** embedded in the iostat output. Notice there is one entry for each timestamp.

Sample iostat file produced by oswbb

extended device statistics

r/s w/s kr/s kw/s wait actv wsvc t asvc t %w %b device
0.0 0.3 0.0 2.1 0.0 0.0 3.4 0.8 0 0 c0t0dOo
0.0 2.1 0.1 12.9 0.0 0.0 0.6 0.4 0 0 c0t2d0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 £dO
2.9 1.2 240.8 1.5 0.0 0.1 0.0 13.3 0 5 c1t0dOo
1.1 0.8 18.0 8.8 0.0 0.0 0.1 5.9 0 1 cltldo
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 c0t1do

Field Descriptions

The iostat output contains summary information for all devices.

Field Description
r/s Shows the number of reads/second
w/s Shows the number of writes/second
kr/s Shows the number of kilobytes read/second
kw/s Shows the number of kilobytes written/second
wait Average number of transactions waiting for service (queue length)
actv Average number of transactions actively being serviced

wsvc_t Average service time in wait queue, in milliseconds

asvc_t Average service time of active transactions, in milliseconds

%w Percent of time there are transactions waiting for service

%b Percent of time the disk is busy

device Device name

What to look for
» Average service times greater than 20msec for long duration.
» High average wait times.

Back to Contents

oswmpstat
<node_name>_mpstat_YY.MM.DD:HH24.dat

These files will contain output from the 'mpstat’ command that is obtained and archived by OSWatcher at
specified intervals. These files will only exist if 'mpstat’ is installed on the OS and if the oswbb user has
privileges to run the utility. Please keep in mind that what gets reported in mpstat may be different
depending upon you platform. You should refer to your OS mpstat man pages for the most accurate up to
date descriptions of these fields

The mpstat command collects and displays performance statistics for all logical CPUs in the system.

The mpstat utility is fairly standard across UNIX platforms. Each platform will have a slightly different
version of the mpstat utility. You should consult your operating system man pages for specifics. The
sample provided below is for Solaris.

oswbb runs the mpstat utility at the specified interval and stores the data in the oswmpstat subdirectory
under the archive directory. The data is stored in hourly archive files. Each entry in the file contains a
timestamp prefixed by *** embedded in the mpstat output. Notice there are 2 entries for each timestamp.

9/8/2014 3:15 PM

Document 1531223.1

7 of 18

You should always ignore the first entry as this entry is always invalid.

Sample mpstat file produced by oswbb

***Fri Jan 28 12:50:36 EST 2005
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl

0 0 0 0O 483 383 118 1 0 0 0 64 0 0 0 100
0 1268 0 0O 486 382 414 42 0 0 0 2902 8 24 0 68
0 4 0 0O 479 379 144 3 0 0 0 96 0 0 0 100

Field Descriptions

Field Description

cpu |Processor ID

minf |Minor faults

mif |Major Faults

xcal |[Processor cross-calls (when one CPU wakes up another by interrupting it).

intr |Interrupts

ithr |Interrupts as threads (except clock)

csw |Context switches

icsw |Involuntary context switches

migr |Thread migrations to another processor

smtx |Number of times a CPU failed to obtain a mutex

srw |[Number of times a CPU failed to obtain a read/write lock on the first try

syscl |Number of system calls

usr |Percentage of CPU cycles spent on user processes

sys |Percentage of CPU cycles spent on system processes

wit Percentage of CPU cycles spent waiting on event

idl Percentage of unused CPU cycles or idle time when the CPU is basically doing nothing

What to look for

e Involuntary context switches (this is probably the more relevant statistic when examining
performance issues.)

« Number of times a CPU failed to obtain a mutex. Values consistently greater than 200 per CPU
causes system time to increase.

 xcal is very important, show processor migration

Back to Contents

oswnetstat

<node_name>_netstat_YY.MM.DD:HH24.dat

These files will contain output from the 'netstat' command that is obtained and archived by OSWatcher at
specified intervals. These files will only exist if 'netstat’ is installed on the OS and if the oswbb user has
privileges to run the utility. Please keep in mind that what gets reported in netstat may be different
depending upon you platform. You should refer to your OS netstat man pages for the most accurate up to
date descriptions of these fields

The netstat command displays current TCP/IP network connections and protocol statistics.

The netstat utility is standard across UNIX platforms. Each platform will have a slightly different version of
the netstat utility. You should consult your operating system man pages for specifics. The sample
provided below is for Solaris.

oswbb runs the netstat utility at the specified interval and stores the data in the oswnetstat subdirectory
under the archive directory. The data is stored in hourly archive files. Each entry in the file contains a

https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

9/8/2014 3:15 PM

Document 1531223.1

8 of 18

timestamp prefixed by *** embedded in the netstat output.

The netstat utility has many command line flags, and the most commonly used to troubleshoot RAC is
"ia(n)" for the interface level output and "s" for the protocol level statistics. The following are examples for

the two different command parameters.

The command line options "-ain" have these effects:

https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

|Option

‘Description

-a

The command output will use the logical names of the interface. It will also report the name of the IP

address found through normal IP address resolution methods.

‘This triggers the Interface specific statistics, the columns of which are outlined in table [bla-KR]

-N

‘This causes the output to use IP addresses instead of the resolved names

Example netstat file produced by oswbb:

Sample netstat file produced by oswbb

***Fri Jan 28 12:50:36 EST 2005

Name
100
eri0
RAWIP

UDP

TCP

IPv4

Mtu Net/Dest
8232 127.0.0.0
1500 138.1.140.0

rawipInDatagrams
rawipInCksumErrs
rawipOutErrors

udpInDatagrams
udpOutDatagrams

tcpRtoAlgorithm
tcpRtoMax
tcpActiveOpens
tcpAttemptFails
tcpCurrEstab
tcpOutDataSegs
tcpRetransSegs
tcpOutAck
tcpOutUrg
tcpOutWinProbe
tcpOutRsts
tcpInSegs
tcpInAckSegs
tcpInDupAck
tcpInInorderSegs
tcpInUnorderSegs
tcpInDupSegs
tcpInPartDupSegs
tcpInPastWinSegs
tcpInWinProbe
tcpInClosed
tcpRttUpdate
tcpTimRetransDrop
tcpTimKeepalivePr
tcpListenDrop
tcpHalfOpenDrop

ipForwarding
ipInReceives
ipInAddrErrors
ipForwDatagrams
ipInUnknownProtos
ipInDelivers
ipOutDiscards
ipReasmTimeout
ipReasmOKs
ipReasmDuplicates
ipFragOKs
ipFragCreates
tcpInErrs
udpInCksumErrs
rawipInOverflows
ipsecInFailed
ipOutIPv6

Address
127.0.0.1 296065

138.1.140.96

obe =

o

295719
295671

60000

27

15
479

212

10

915

489

477

o

O O OO NOO O oo

2
17858585
0

0

0

296623

o
O O O OO0 oo oo o

Ipkts Ierrs

Opkts Oerrs Collis Queue

0 296065 0 0 0
0 176244 2 191951 0
rawipInErrors = 0
rawipOutDatagrams = 0
udpInErrors = 0
udpOutErrors = 0
tcpRtoMin = 400
tcpMaxConn = =1l
tcpPassiveOpens = 21
tcpEstabResets = 0
tcpOutSegs = 691
tcpOutDataBytes = 43028
tcpRetransBytes = 0
tcpOutAckDelayed = 83
tcpOutWinUpdate = 0
tcpOutControl = 85
tcpOutFastRetrans
= 0
tcpInAckBytes = 43023
tcpInAckUnsent = 0
tcpInInorderBytes = 40640
tcpInUnorderBytes = 0
tcpInDupBytes = 0
tcpInPartDupBytes = 0
tcpInPastWinBytes = 0
tcpInWinUpdate = 0
tcpRttNoUpdate = 0
tcpTimRetrans = 0
tcpTimKeepalive = 80
tcpTimKeepaliveDrop = 0
tcpListenDropQ0 = 0
tcpOutSackRetrans = 0
ipDefaultTTL = 255
ipInHdrErrors = 0
ipInCksumErrs = 0
ipForwProhibits = 0
ipInDiscards = 0
ipOutRequests = 17624403
ipOutNoRoutes = 827
ipReasmReqgds = 0
ipReasmFails = 0
ipReasmPartDups = 0
ipFragFails = 0
ipRoutingDiscards = 0
udpNoPorts = 225722
udpInOverflows = 0
ipsecInSucceeded = 0
ipInIPv6 = 0
ipOutSwitchIPv6 = 5

9/8/2014 3:15 PM

Document 1531223.1

TIPv6

ICMPv4

ICMPv6

IGMP:

icmpInMsgs
icmpInCksumErrs =
icmpInDestUnreachs =
icmpInParmProbs =
icmpInRedirects =
icmpInEchos = 17624842
icmpInTimestamps =
icmpInAddrMasks =
icmpInFragNeeded =
icmpOutDrops = 225716
icmpOutDestUnreachs =
icmpOutParmProbs =
icmpOutRedirects =
icmpOutEchoReps = 17624842
icmpOutTimestampReps =
icmpOutAddrMaskReps =
icmpInOverflows =

2490

0
0

2490

o O O

ipv6Forwarding =
ipv6InReceives =
ipv6InTooBigErrors =
ipv6InAddrErrors =
ipveInTruncatedPkts =
ipvé6InDelivers =
ipveOutRequests =
ipveOutNoRoutes =
ipveOutFragFails =
ipv6ReasmReqds =
ipv6ReasmFails =
ipveOutMcastPkts =
ipv6ReasmPartDups =
udpInCksumErrs =
rawipInOverflows =
ipveOutIPv4 =

O OO OO OO0 OO0OO0OOoOOoON

= 17624914

icmp6InMsgs =
icmp6InDestUnreachs =
icmp6InTimeExcds =
icmp6InPktTooBigs =
icmp6InEchoReplies =
icmp6InRouterAds =
icmp6InNeighborAds =
icmp6InBadRedirects =
icmp6 InGroupResps =
icmp6InOverflows =
icmp60OutMsgs =
icmp6OutDestUnreachs =
icmp60OutTimeExcds =
icmp60OutPktTooBigs =
icmp6OutEchoReplies =
icmp60OutRouterAds =
icmp60OutNeighborAds =
icmp60OutGroupQueries =
icmp60OutGroupReds =

messages received
messages received with too few bytes
messages received with bad checksum
membership queries received
membership queries received with invalid field(s)
membership reports received
membership reports received with invalid field(s)
membership reports received for groups to which we belong

membership reports sent

0
72
0
0

0
0
0

78
0
0

0
0
0

O OO OO OO0 OO0 OO0 OoOoO oo oo

https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

ipv6eDefaultHopLimit
ipv6InHdrErrors
ipv6InNoRoutes
ipv6InUnknownProtos
ipv6InDiscards
ipveOutForwDatagrams
ipveOutDiscards
ipveOutFragOKs
ipveOutFragCreates
ipv6ReasmOKs
ipv6InMcastPkts
ipv6ReasmDuplicates
ipv6ForwProhibits
udpInOverflows
ipveInIPv4
ipveOutSwitchIPv4

icmpInErrors
icmpInUnknowns
icmpInTimeExcds
icmpInSrcQuenchs
icmpInBadRedirects
icmpInEchoReps
icmpInTimestampReps
icmpInAddrMaskReps
icmpOutMsgs
icmpOutErrors
icmpOutTimeExcds
icmpOutSrcQuenchs
icmpOutEchos
icmpOutTimestamps
icmpOutAddrMasks
icmpOutFragNeeded

icmp6InErrors
icmp6InAdminProhibs
icmp6InParmProblems
icmp6InEchos
icmpé6InRoutersSols
icmp6InNeighborSols
icmpé6InRedirects
icmp6InGroupQueries
icmp6InGroupReds

icmp6OutErrors
icmp6OutAdminProhibs
icmp6OutParmProblems
icmp6OutEchos
icmp6OutRouterSols
icmp6OutNeighborSols
icmp6OutRedirects
icmp6OutGroupResps

N
w1
(S5

O OO OO O OO0 OO OO OO

1762492

O O OO OO OO0 O OO OO OO

O O O OO O o o o

O O O O O o o o

Field Descriptions:

The netstat output produced by oswbb contains 2 sections. The first section contains information about
all the network interfaces. The second section contains information about per-protocol statistics.

Section 1: Netstat -ain

|Field

|Description

hame

|Device name of interface

|Mtu

9of 18

|Maximum transmission unit

9/8/2014 3:15 PM

Document 1531223.1

10 of 18

|Net |Network Segment Address
|address |Network address of the device
|ipkts |Input packets

|Ierrs Ilnput errors

|opkts |Output Packets

Oerrs Output errors

collis Collisions

|queue |Number in the Queue

Section 2: Protocol Statistics
The per-protocol statistics can be divided into several categories:

RAWIP (raw IP) packets
TCP packets

IPv4 packets

ICMPv4 packets

IPv6 packets

ICMPV6 packets

UDP packets

IGMP packet

Each protocol type has a specific set of measures associated with it. Network analysis requires
evaluation of these measurements on an individual level and all together to examine the overall health of
the network communications.

The TCP protocol is used the most in Oracle database and applications. Some implementations for RAC
use UDP for the interconnect protocol instead of TCP. The statistics cannot be divided up on a
per-interface basis, so these should be compared to the "-i" statistics above.

What to look for:
Section 1

The information in Section 1 will help diagnose network problems when there is connectivity but response
is slow.

Values to look at:
¢ Collisions (Collis)
¢ Output packets (Opkts)
¢ Input errors (lerrs)
¢ Input packets (Ipkts)
The above values will give information to workout network collision rates as follows:

Network collision rate = Output collision / Output packets

For a switched network, the collisions should be 0.1 percent or less (see the Cisco web site as a
reference) of the output packets. Excessive collisions could lead to the switch port the interface is
plugged into to segment, or pull itself off-line, amongst other switch-related issues.

For the input error statistics:
Input Error Rate = lerrs / Ipkts.

If the input error rate is high (over 0.25 percent), the host is excessively dropping packets. This could
mean there is a mismatch of the duplex or speed settings of the interface card and switch. It could also
imply a failed patch cable.

If ierrs or oerrs show an excessive amount of errors, more information can be found by examination of
the netstat -s output.

For Sun systems, further information about a specific interface can be found by using the "-k" option for
netstat. The output will give fuller statistics for the device, but this option is not mentioned in the netstat
man page.

Section 2

https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

9/8/2014 3:15 PM

Document 1531223.1 https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

The information in Section 2 contains the protocol statistics.
Many performance problems associated with the network involve the retransmission of the TCP packets.
To find the segment retransmission rate:
%segment-retrans=(tcpRetransSegs / tcpOutDataSegs) * 100
To find the byte retransmission rate:
%byte-retrans = (tcpRetransBytes / tcpOutDataBytes) * 100
Most network analyzers report TCP retransmissions as segments (frames) and not in bytes.

Back to Contents

oswprvtnet
<node_name>_prvtnet_YY.MM.DD:HH24.dat

These files will contain output from running the 'private.net 'script that must be created first by the
customer. A template for what this file should look like is supplied in the oswbb directory and is named
Exampleprivate.net. A new file named private.net needs to be created based on the sample file first and
then granted execute priviledge. You should test this file works by executing it standalone (./private.net).
oswbb will then execute this file along with the other data collectors.

Information about the status of RAC private networks should be collected. This requires the user to
manually add entries for these private networks into the private.net file located in the base oswbb
directory. Instructions on how to do this are contained in the README file.

oswbb uses the traceroute command to obtain the status of these private networks. Each operating
system uses slightly different arguments to the traceroute command. Examples of the syntax to use for
each operating system are contained in the sample Exampleprivate.net file located in the base oswbb
directory. This will result in the output appearing differently across UNIX platforms. oswbb runs the
private.net file at the specified interval and stores the data in the oswprvtnet subdirectory under the
archive directory. The data is stored in hourly archive files. Each entry in the file contains a timestamp
prefixed by *** embedded in the top output.

Sample file produced by oswbb

***Fri Jan 28 12:50:36 EST 2005

traceroute to celdecclu2.us.oracle.com (138.2.71.112): 1-30 hops
(initial packetsize = 1500)
1 celdecclu2.us.oracle.com (138.2.71.112) 1.95ms 2.92 ms 1.95 ms

What to Look For

e Example 1: Interface is up and responding:

traceroute to X.X.X.X, (X.X.X.X) 30 hops max, 1492 byte packets
1 X.X.X.X 1.015 ms 0.766 ms 0.755 ms

e Example 2: Target interface is not on a directly connected network, so validate that the address is
correct or the switch it is plugged in is on the same VLAN (or other issue):

traceroute to X.X.X.X, (X.X.X.X) 30 hops max, 40 byte packets
traceroute: host X.X.X.X is not on a directly-attached network

e Example 3: Network is unreachable:

11 of 18 9/8/2014 3:15 PM

Document 1531223.1 https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

traceroute to X.X.X.X, (X.X.X.X) 30 hops max, 40 byte packets
Network is unreachable

Back to Contents

oswifconfig
<node_name>_ifconfig_YY.MM.DD:HH24.dat

These files will contain output from the 'ifconfig -a' command that is obtained and archived by OSWatcher
at specified intervals. These files will only exist if 'ifconfig' is available on the OS and if the oswbb user
has privileges to run the utility. Please keep in mind that what gets reported in ifconfig may be different
depending upon you platform. You should refer to your OS ifconfig man pages for the most accurate up
to date descriptions of these fields

The ifconfig command displays the current status of network interfaces.

The ifconfig utility is standard across UNIX platforms. Each platform will have a slightly different version
of the ifconfig utility. You should consult your operating system man pages for specifics. The sample
provided below is for Linux.

oswbb runs the ifconfig utility at the specified interval and stores the data in the oswifconfig subdirectory
under the archive directory. The data is stored in hourly archive files. Each entry in the file contains a
timestamp prefixed by *** embedded in the ifconfig output.

The ifconfig -a command utility is most commonly used to troubleshoot RAC network interface issues.
The output of this command is used with the output of netstat and private.net to determine any network
interface issues that may exist on your server.

Sample file produced by oswbb

***Tue Apr 29 12:50:36 EST 2014

ethO Link encap:Ethernet HWaddr 00:16:3E:66:14:00

inet addr:10.141.154.225 Bcast:10.141.154.255 Mask:255.255.254.0
inet6 addr: fe80::216:3eff:fe66:1400/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:8098395 errors:0 dropped:0 overruns:0 frame:0

TX packets:35772 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:609160321 (580.9 MiB) TX bytes:17141198 (16.3 MiB)

What to Look For

e Example 1: Interface is up and responding:

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

Back to Contents

oswps
<node_name>_ps_YY.MM.DD:HH24.dat

These files will contain output from the 'ps' command that is obtained and archived by OSWatcher at
specified intervals. These files will only exist if 'ps' is installed on the OS and if the oswbb user has
privileges to run the utility. Please keep in mind that what gets reported in ps may be different depending
upon you platform. You should refer to your OS ps man pages for the most accurate up to date
descriptions of these fields

12 of 18 9/8/2014 3:15 PM

Document 1531223.1

13 0f 18

The ps (process state) command list all the processes currently running on the system and provides
information about CPU consumption, process state, priority of the process, etc. The ps command has a
number of options to control which processes are displayed, and how the output is formatted. oswbb runs
the ps command with the -elf option.

The ps command is fairly standard across UNIX platforms Each platform will have a slightly different
version of the ps utility. You should consult your operating system man pages for specifics. The sample
provided below is for Solaris.

oswbb runs the ps command at the specified interval and stores the data in the oswps subdirectory under
the archive directory. The data is stored in hourly archive files. Each entry in the file contains a timestamp
prefixed by *** embedded in the ps output.

Sample ps file produced by oswbb

***Wed Feb 2 09:26:54 EST 2005

F SUID PID PPID CPRI NI ADDR SZ WCHAN STIME TTY TIME CMD
19 T root 0 0 00 SY 2 0 Jan 31 ? 0:13 sched
8 S root 1 0 041 20 ? 107 2 Jan 31 ? 0:00 /etc
19 S root 2 0 00 SY 2 0 ? Jan 31 ? 0:00 page
19 S root 3 0 00 SY 2 0 ? Jan 31 ? 0:50 fsflu
8 S root 355 1 041 20 2 232 2 Jan 31 ? 0:00 /usr/
8 S root 297 296 041 20 2 379 2 Jan 31 ? 0:00 htt s
8 S cedavis 391 381 0 89 20 2 301 2 Jan 31 ? 0:00 /usr/
Field Descriptions
Field Description

f Flags s State of the process

uid The effective user ID number of the process

pid The process ID of the process

ppid |The process ID of the parent process.

d Processor utilization for scheduling (obsolete).
pri The priority of the process.

ni Nice value, used in priority computation.
addr |[The memory address of the process.

sz The total size of the process in virtual memory, including all mapped files and devices, in pages.
wchan|The address of an event for which the process is sleeping (if blank, the process is running).
stime |The starting time of the process, given in hours, minutes, and seconds.

The controlling terminal for the process (the message ?, is printed when there is no controlling
terminal).

tty

time |The cumulative execution time for the process.
cmd |[The command name process is executing.

What to look for

* The information in the ps command will primarily be used as supporting information for RAC
diagnostics. If for example, the status of a process prior to a system crash may be important for root
cause analysis. The amount of memory a process is consuming is another example of how this
data can be used.

Back to Contents

oswtop
<node_name>_top_YY.MM.DD:HH24.dat

These files will contain output from the 'top' command that is obtained and archived by OSWatcher at
specified intervals. These files will only exist if 'top' is installed on the OS and if the oswbb user has
privileges to run the utility. Please keep in mind that what gets reported in top may be different depending
upon you platform. You should refer to your OS top man pages for the most accurate up to date
descriptions of these fields

Top is a program that will give continual reports about the state of the system, including a list of the top

https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

9/8/2014 3:15 PM

Document 1531223.1

14 of 18

CPU using processes. Top has three primary design goals:

e provide an accurate snapshot of the system and process state,
e not be one of the top processes itself,
e be as portable as possible.

Each operating system uses a different version of the UNIX utility top. This will result in the top output
appearing differently across UNIX platforms. You should consult your operating system man pages for
specifics. The sample provided below is for Solaris.

oswbb runs the top utility at the specified interval and stores the data in the oswtop subdirectory under
the archive directory. The data is stored in hourly archive files. Each entry in the file contains a timestamp
prefixed by *** embedded in the top output.

Sample top file produced by oswbb

***Fri Jan 28 12:50:36 EST 2005
load averages: 0.11, 0.07, 0.06 12:50:36
136 processes: 133 sleeping, 2 running, 1 on cpu

Memory: 2048M real, 1061M free, 542M swap in use, 1605M swap free
PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU COMMAND
704 cedavis 16 49 346M 276M sleep 222:33 3.51% java

o

362 root 1 59 0 34M 75M sleep 11:49 0.21% Xsun

20675 cedavis 1 0 0 1584K 1064K cpu 0:00 19% top

20640 cedavis 1 0 0 1904K 1240K sleep 0:00 0.14% OSWatcher.sh
20657 cedavis 1 20 0 1904K 1240K sleep 0:00 0.14% oswsub.sh
16881 cedavis 1 59 0 199M 159K sleep 23:04 0.10% oracle

20671 cedavis 1 0 0 1904K 1240K run 0:00 0.09% oswsub.sh
20653 cedavis 1 0 0 1904K 1240K sleep 0:00 0.09% OSWatcherFM.sh
20665 cedavis 1 0 0 1904K 1240K sleep 0:00 0.09% oswsub.sh
20672 cedavis 1 0 0 1264K 1031K sleep 0:00 0.09% iostat

20659 cedavis 1 10 0O 1904K 1240K sleep 0:00 0.09% oswsub.sh
20661 cedavis 1 30 0 1096K 880Ksleep 0:00 0.09% vmstat

20668 cedavis 1 0 0 1904K 1240Krun 0:00 0.05% oswsub.sh
20674 cedavis 1 0 0 968K 624K sleep 0:00 0.05% sleep

20663 cedavis 1 20 0 1080K 864Ksleep 0:00 0.05% mpstat

Field Descriptions
load averages: 0.11, 0.07, 0.06 12:50:36

This line displays the load averages over the last 1, 5 and 15 minutes as well as the system time. This is
quite handy as top basically includes a timestamp along with the data capture.

Load average is defined as the average number of processes in the run queue. A runnable Unix process
is one that is available right now to consume CPU resources and is not blocked on I/O or on a system
call. The higher the load average, the more work your machine is doing.

The three numbers are the average of the depth of the run queue over the last 1, 5, and 15 minutes. In
this example we can see that .11 processes were on the run queue on average over the last minute, .07
processes on average on the run queue over the last 5 minutes, etc. It is important to determine what the
average load of the system is through benchmarking and then look for deviations. A dramatic rise in the
load average can indicate a serious performance problem.

136 processes: 133 sleeping, 2 running, 1 on cpu

This line displays the total number of processes running at the time of the last update. It also indicates
how many Unix processes exist, how many are sleeping (blocked on 1/O or a system call), how many are
stopped (someone in a shell has suspended it), and how many are actually assigned to a CPU. This last
number will not be greater than the number of processors on the machine, and the value should also
correlate to the machine's load average provided the load average is less than the number of CPUs. Like
load average, the total number of processes on a healthy machine usually varies just a small amount
over time. Suddenly having a significantly larger or smaller number of processes could be a warning sign.

Memory: 2048M real, 1061M free, 542M swap in use, 1605M swap free

The "Memory:" line is very important. It reflects how much real and swap memory a computer has, and
how much is free. "Real" memory is the amount of RAM installed in the system, a.k.a. the "physical”
memory. "Swap" is virtual memory stored on the machine's disk.

https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

9/8/2014 3:15 PM

Document 1531223.1 https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

Once a computer runs out of physical memory, and starts using swap space, its performance deteriorates
dramatically. If you run out of swap, you'll likely crash your programs or the OS.

Individual process fields

Field Description

PID Process ID of process

USERNAME Username of process

THR Process thread PRI Priority of process

NICE Nice value of process

SIZE Total size of a process, including code and data, plus the stack space in kilobytes

RES Amount of physical memory used by the process

STATE Current CPU state of process. The states can be S for sleeping, D for uninterrupted, R
for running, T for stopped/traced, and Z for zombied

TIME The CPU time that a process has used since it started

%CPU The CPU time that a process has used since the last update

COMMAND The task's command name

What to Look For

e Large run queue. Large number of processes waiting in the run queue may be an indication that
your system does not have sufficient CPU capacity.

e Process consuming lots of CPU. A process which is "hogging" CPU is always suspect. If this
process is an oracle foreground process it's most likely running an expensive query that should be
tuned. Oracle background process should not hog CPU for long periods of time.

¢ High load averages. Processes should not be backed up on the run queue for extended periods of
time.

e Low swap space. This is an indication you are running low on memory.

Back to Contents

oswvmstat
<node_name>_vmstat_YY.MM.DD:HH24.dat

These files will contain output from the 'vmstat' command that is obtained and archived by OSWatcher at
specified intervals. These files will only exist if 'vmstat' is installed on the OS and if the oswbb user has
privileges to run the utility. Please keep in mind that what gets reported in vmstat may be different
depending upon you platform. You should refer to your OS vmstat man pages for the most accurate up to
date descriptions of these fields.

The name vmstat comes from "report virtual memory statistics". The vmstat utility does a bit more than
this, though. In addition to reporting virtual memory, vmstat reports certain kernel statistics about
processes, disk, trap, and CPU activity.

The vmestat utility is fairly standard across UNIX platforms. Each platform will have a slightly different
version of the vmstat utility. You should consult your operating system man pages for specifics. The
sample provided below is for Solaris.

oswbb runs the vmstat utility at the specified interval and stores the data in the oswvmstat subdirectory
under the archive directory. The data is stored in hourly archive files. Each entry in the file contains a
timestamp prefixed by *** embedded in the vmstat output.

Sample vmstat file produced by oswbb

***Fri Jan 28 12:50:36 EST 2005

procsmemory page disk faults cpu

r b w swap free re mf pi po fr de sr dd £0 s0 in sy cs us sy id
0 00 1761344 1246520 1 6 0 0 0 0 0 2 0 0O O 380 1364 900 4 1 95
0 00 1643920 1086776 331 1485 8 16 160 0 31 0 0 O 447 4966 1315 15 31 54
0 00 1643872 1086728 6 0 0O 0 0 00O O O O 389 1472 932 0 0 100

Field Descriptions

150f 18 9/8/2014 3:15 PM

Document 1531223.1 https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

The vmstat output is actually broken up into six sections: procs, memory, page, disk, faults and CPU.
Each section is outlined in the following table.

Field |Description
PROCS
r Number of processes that are in a wait state and basically not doing anything but waiting to
run
b Number of processes that were in sleep mode and were interrupted since the last update
w Number of processes that have been swapped out by mm and vm subsystems and have yet
to run
MEMORY
swap The amount of swap space currently available free The size of the free list
PAGE
re page reclaims
mf minor faults
pi kilobytes paged in
po kilobytes paged out
fr kilobytes freed
de anticipated short-term memory shortfall (Kbytes)
sr pages scanned by clock algorithm
DISK
Bi Disk blocks sent to disk devices in blocks per second
FAULTS
In Interrupts per second, including the CPU clocks
Sy System calls
Cs Context switches per second within the kernel
CPU
Us Percentage of CPU cycles spent on user processes
Sy Percentage of CPU cycles spent on system processes
Id Percentage of unused CPU cycles or idle time when the CPU is basically doing nothing

What to look for

The following information should be used as a guideline and not considered hard and fast rules. The
information documented below comes from Adrian Cockcroft's book, Sun Performance Tuning. Other
operating systems like HP and Linux may have different thresholds.

e Large run queue. Adrian Cockcroft defines anything over 4 processes per CPU on the run queue as
the threshold for CPU saturation. This is certainly a problem if this last for any long period of time.

e CPU utilization. The amount of time spent running system code should not exceed 30% especially if
idle time is close to 0%.

« A combination of large run queue with no idle CPU is an indication the system has insufficient CPU
capacity.

« Memory bottlenecks are determined by the scan rate (sr) . The scan rate is the pages scanned by
the clock algorithm per second. If the scan rate (sr) is continuously over 200 pages per second then
there is a memory shortage.

« Disk problems may be identified if the number of processes blocked exceeds the number of
processes on run queue.

Back to Contents

Graphing and Analyzing the Output

oswbba has been added to OSWatcher. This utility provides the ability to graph and analyze your
OSWatcher data collection.. See the oswbba User Guide for more information. To see a sample of the
oswbba output, click here. To add database metrics use the LTOM profiler.. Click here to see a sample
LTOM profile.

16 of 18 9/8/2014 3:15 PM

Document 1531223.1 https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop...

Sample Graph

OSWatcher Memory: Free(K Bytes)

406 6 8 10 12 AM 2 4 6 8 10 12PM 2
Sep 13, 2006 14

Back to Contents

Known Issues

No issues to report.

Back to Contents

Download

Current Unix Version 7.3.1 September 8, 2014

Download the latest version of oswbb by clicking on the download link provided in Note: 301137.1. The
download link no longer exists from inside this document. If you are still unable to download the file, you
may request that we email you a copy: carl.davis@oracle.com

Note that you can also download oswbb in the RAC and DB Support Tools Bundle:
Document 1594347.1 RAC and DB Support Tools Bundle

Back to Contents

Reporting Feedback

If you encounter problems running OSWatcher which is not listed under the Known Issue section or
would like to provide comments/feedback about OSWatcher (including enhancement requests) please
send email to carl.davis@oracle.com

Back to Contents

Sending Files To Support

For those users running RAC-DDT, the oswbb archive directory will be automatically included in the
RAC-DDT.tar.Z compressed archive file. For more information on RAC-DDT see Note 301138.1. For
users not running RAC-DDT, create a tarball of the archive directory to send in to support by executing
tarupfiles.sh file in the oswbb directory.

Back to Contents

Legal Notices and Terms of Use

v|Related
Products

17 of 18 9/8/2014 3:15 PM

