1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
use crate::io::{self, ErrorKind, Read, Write};
use crate::mem::MaybeUninit;

/// Copies the entire contents of a reader into a writer.
///
/// This function will continuously read data from `reader` and then
/// write it into `writer` in a streaming fashion until `reader`
/// returns EOF.
///
/// On success, the total number of bytes that were copied from
/// `reader` to `writer` is returned.
///
/// If you’re wanting to copy the contents of one file to another and you’re
/// working with filesystem paths, see the [`fs::copy`] function.
///
/// [`fs::copy`]: crate::fs::copy
///
/// # Errors
///
/// This function will return an error immediately if any call to [`read`] or
/// [`write`] returns an error. All instances of [`ErrorKind::Interrupted`] are
/// handled by this function and the underlying operation is retried.
///
/// [`read`]: Read::read
/// [`write`]: Write::write
///
/// # Examples
///
/// ```
/// use std::io;
///
/// fn main() -> io::Result<()> {
///     let mut reader: &[u8] = b"hello";
///     let mut writer: Vec<u8> = vec![];
///
///     io::copy(&mut reader, &mut writer)?;
///
///     assert_eq!(&b"hello"[..], &writer[..]);
///     Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> io::Result<u64>
where
    R: Read,
    W: Write,
{
    cfg_if::cfg_if! {
        if #[cfg(any(target_os = "linux", target_os = "android"))] {
            crate::sys::kernel_copy::copy_spec(reader, writer)
        } else {
            generic_copy(reader, writer)
        }
    }
}

/// The general read-write-loop implementation of
/// `io::copy` that is used when specializations are not available or not applicable.
pub(crate) fn generic_copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> io::Result<u64>
where
    R: Read,
    W: Write,
{
    let mut buf = MaybeUninit::<[u8; super::DEFAULT_BUF_SIZE]>::uninit();
    // FIXME: #42788
    //
    //   - This creates a (mut) reference to a slice of
    //     _uninitialized_ integers, which is **undefined behavior**
    //
    //   - Only the standard library gets to soundly "ignore" this,
    //     based on its privileged knowledge of unstable rustc
    //     internals;
    unsafe {
        reader.initializer().initialize(buf.assume_init_mut());
    }

    let mut written = 0;
    loop {
        let len = match reader.read(unsafe { buf.assume_init_mut() }) {
            Ok(0) => return Ok(written),
            Ok(len) => len,
            Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
            Err(e) => return Err(e),
        };
        writer.write_all(unsafe { &buf.assume_init_ref()[..len] })?;
        written += len as u64;
    }
}