Class to model Neptune planet.
Class Neptune models that planet.
list of weak references to the object (if defined)
This method computes the apparent heliocentric position of planet Neptune for a given epoch, using the VSOP87 theory.
Parameters: | epoch (Epoch) – Epoch to compute Neptune position, as an Epoch object |
---|---|
Returns: | A tuple with the heliocentric longitude and latitude (as Angle objects), and the radius vector (as a float, in astronomical units), in that order |
Return type: | tuple |
Raises: | TypeError if input values are of wrong type. |
This method computes the time of the conjunction closest to the given epoch.
Parameters: | epoch (Epoch) – Epoch close to the desired conjunction |
---|---|
Returns: | The time when the conjunction happens, as an Epoch |
Return type: | Epoch |
Raises: | TypeError if input value is of wrong type. |
Raises: | ValueError if input epoch outside the -2000/4000 range. |
>>> epoch = Epoch(1993, 10, 1.0)
>>> conj = Neptune.conjunction(epoch)
>>> y, m, d = conj.get_date()
>>> print(y)
1994
>>> print(m)
1
>>> print(round(d, 4))
11.3057
This method computes the geocentric position of Neptune (right ascension and declination) for the given epoch, as well as the elongation angle.
Parameters: | epoch (Epoch) – Epoch to compute geocentric position, as an Epoch object |
---|---|
Returns: | A tuple containing the right ascension, the declination and the elongation angle as Angle objects |
Return type: | tuple |
Raises: | TypeError if input value is of wrong type. |
>>> epoch = Epoch(1992, 12, 20.0)
>>> ra, dec, elon = Neptune.geocentric_position(epoch)
>>> print(ra.ra_str(n_dec=1))
19h 17' 14.5''
>>> print(dec.dms_str(n_dec=1))
-21d 34' 15.1''
>>> print(elon.dms_str(n_dec=1))
19d 44' 59.6''
This method computes the geometric heliocentric position of planet Neptune for a given epoch, using the VSOP87 theory.
Parameters: |
|
---|---|
Returns: | A tuple with the heliocentric longitude and latitude (as Angle objects), and the radius vector (as a float, in astronomical units), in that order |
Return type: | tuple |
Raises: | TypeError if input values are of wrong type. |
>>> epoch = Epoch(2018, 10, 27.0)
>>> l, b, r = Neptune.geometric_heliocentric_position(epoch)
>>> print(round(l.to_positive(), 4))
345.3776
>>> print(round(b, 4))
-0.9735
>>> print(round(r, 5))
29.93966
This function computes the approximate magnitude of Neptune.
Parameters: |
|
---|---|
Returns: | Neptune’s magnitude |
Return type: | float |
Raises: | TypeError if input values are of wrong type. |
This method computes the time of the opposition closest to the given epoch.
Parameters: | epoch (Epoch) – Epoch close to the desired opposition |
---|---|
Returns: | The time when the opposition happens, as an Epoch |
Return type: | Epoch |
Raises: | TypeError if input value is of wrong type. |
Raises: | ValueError if input epoch outside the -2000/4000 range. |
>>> epoch = Epoch(1846, 8, 1)
>>> oppo = Neptune.opposition(epoch)
>>> y, m, d = oppo.get_date()
>>> print(y)
1846
>>> print(m)
8
>>> print(round(d, 4))
20.1623
This method computes the orbital elements of Neptune for the standard equinox J2000.0 for a given epoch.
Parameters: | epoch (Epoch) – Epoch to compute orbital elements, as an Epoch object |
---|---|
Returns: | A tuple containing the following six orbital elements: - Mean longitude of the planet (Angle) - Semimajor axis of the orbit (float, astronomical units) - eccentricity of the orbit (float) - inclination on the plane of the ecliptic (Angle) - longitude of the ascending node (Angle) - argument of the perihelion (Angle) |
Return type: | tuple |
Raises: | TypeError if input values are of wrong type. |
>>> epoch = Epoch(2065, 6, 24.0)
>>> l, a, e, i, ome, arg = Neptune.orbital_elements_j2000(epoch)
>>> print(round(l, 6))
87.407029
>>> print(round(a, 8))
30.11038676
>>> print(round(e, 7))
0.0094597
>>> print(round(i, 6))
1.770101
>>> print(round(ome, 5))
131.74402
>>> print(round(arg, 6))
-83.6046
This method computes the orbital elements of Neptune for the mean equinox of the date for a given epoch.
Parameters: | epoch (Epoch) – Epoch to compute orbital elements, as an Epoch object |
---|---|
Returns: | A tuple containing the following six orbital elements: - Mean longitude of the planet (Angle) - Semimajor axis of the orbit (float, astronomical units) - eccentricity of the orbit (float) - inclination on the plane of the ecliptic (Angle) - longitude of the ascending node (Angle) - argument of the perihelion (Angle) |
Return type: | tuple |
Raises: | TypeError if input values are of wrong type. |
>>> epoch = Epoch(2065, 6, 24.0)
>>> l, a, e, i, ome, arg = Neptune.orbital_elements_mean_equinox(epoch)
>>> print(round(l, 6))
88.321947
>>> print(round(a, 8))
30.11038676
>>> print(round(e, 7))
0.0094597
>>> print(round(i, 6))
1.763855
>>> print(round(ome, 5))
132.46986
>>> print(round(arg, 6))
-83.415521
This table contains the parameters to compute Neptune’s orbital elements for the mean equinox of date. Based in Table 31.A, page 213
This table contains the parameters to compute Neptune’s orbital elements for the standard equinox J2000.0. Based on Table 31.B, page 215
This table contains Neptune’s periodic terms (all of them) from the planetary theory VSOP87 for the heliocentric latitude at the equinox of date (taken from the ‘D’ solution). In Meeus’ book a shortened version can be found in page 453.
This table contains Neptune’s periodic terms (all of them) from the planetary theory VSOP87 for the heliocentric longitude at the equinox of date (taken from the ‘D’ solution). In Meeus’ book a shortened version can be found in pages 452-453.
This table contains Neptune’s periodic terms (all of them) from the planetary theory VSOP87 for the radius vector at the equinox of date (taken from the ‘D’ solution). In Meeus’ book a shortened version can be found in page 454.