Class to model Uranus planet.
This table contains the parameters to compute Uranus’s orbital elements for the mean equinox of date. Based in Table 31.A, page 213
This table contains the parameters to compute Uranus’s orbital elements for the standard equinox J2000.0. Based on Table 31.B, page 215
Class Uranus models that planet.
list of weak references to the object (if defined)
This method computes the apparent heliocentric position of planet Uranus for a given epoch, using the VSOP87 theory.
Parameters: | epoch (Epoch) – Epoch to compute Uranus position, as an Epoch object |
---|---|
Returns: | A tuple with the heliocentric longitude and latitude (as Angle objects), and the radius vector (as a float, in astronomical units), in that order |
Return type: | tuple |
Raises: | TypeError if input values are of wrong type. |
This method computes the time of the conjunction closest to the given epoch.
Parameters: | epoch (Epoch) – Epoch close to the desired conjunction |
---|---|
Returns: | The time when the conjunction happens, as an Epoch |
Return type: | Epoch |
Raises: | TypeError if input value is of wrong type. |
Raises: | ValueError if input epoch outside the -2000/4000 range. |
>>> epoch = Epoch(1993, 10, 1.0)
>>> conj = Uranus.conjunction(epoch)
>>> y, m, d = conj.get_date()
>>> print(y)
1994
>>> print(m)
1
>>> print(round(d, 4))
12.7365
This method computes the geocentric position of Uranus (right ascension and declination) for the given epoch, as well as the elongation angle.
Parameters: | epoch (Epoch) – Epoch to compute geocentric position, as an Epoch object |
---|---|
Returns: | A tuple containing the right ascension, the declination and the elongation angle as Angle objects |
Return type: | tuple |
Raises: | TypeError if input value is of wrong type. |
>>> epoch = Epoch(1992, 12, 20.0)
>>> ra, dec, elon = Uranus.geocentric_position(epoch)
>>> print(ra.ra_str(n_dec=1))
19h 13' 48.7''
>>> print(dec.dms_str(n_dec=1))
-22d 46' 13.0''
>>> print(elon.dms_str(n_dec=1))
18d 44' 18.7''
This method computes the geometric heliocentric position of planet Uranus for a given epoch, using the VSOP87 theory.
Parameters: |
|
---|---|
Returns: | A tuple with the heliocentric longitude and latitude (as Angle objects), and the radius vector (as a float, in astronomical units), in that order |
Return type: | tuple |
Raises: | TypeError if input values are of wrong type. |
>>> epoch = Epoch(2018, 10, 27.0)
>>> l, b, r = Uranus.geometric_heliocentric_position(epoch)
>>> print(round(l.to_positive(), 4))
30.5888
>>> print(round(b, 4))
-0.5315
>>> print(round(r, 5))
19.86964
This function computes the approximate magnitude of Uranus.
Parameters: |
|
---|---|
Returns: | Uranus’s magnitude |
Return type: | float |
Raises: | TypeError if input values are of wrong type. |
This method computes the time of the opposition closest to the given epoch.
Parameters: | epoch (Epoch) – Epoch close to the desired opposition |
---|---|
Returns: | The time when the opposition happens, as an Epoch |
Return type: | Epoch |
Raises: | TypeError if input value is of wrong type. |
Raises: | ValueError if input epoch outside the -2000/4000 range. |
>>> epoch = Epoch(1780, 12, 1.0)
>>> oppo = Uranus.opposition(epoch)
>>> y, m, d = oppo.get_date()
>>> print(y)
1780
>>> print(m)
12
>>> print(round(d, 4))
17.5998
This method computes the orbital elements of Uranus for the standard equinox J2000.0 for a given epoch.
Parameters: | epoch (Epoch) – Epoch to compute orbital elements, as an Epoch object |
---|---|
Returns: | A tuple containing the following six orbital elements: - Mean longitude of the planet (Angle) - Semimajor axis of the orbit (float, astronomical units) - eccentricity of the orbit (float) - inclination on the plane of the ecliptic (Angle) - longitude of the ascending node (Angle) - argument of the perihelion (Angle) |
Return type: | tuple |
Raises: | TypeError if input values are of wrong type. |
>>> epoch = Epoch(2065, 6, 24.0)
>>> l, a, e, i, ome, arg = Uranus.orbital_elements_j2000(epoch)
>>> print(round(l, 6))
234.602641
>>> print(round(a, 8))
19.21844604
>>> print(round(e, 7))
0.0463634
>>> print(round(i, 6))
0.772094
>>> print(round(ome, 5))
74.05468
>>> print(round(arg, 6))
99.009058
This method computes the orbital elements of Uranus for the mean equinox of the date for a given epoch.
Parameters: | epoch (Epoch) – Epoch to compute orbital elements, as an Epoch object |
---|---|
Returns: | A tuple containing the following six orbital elements: - Mean longitude of the planet (Angle) - Semimajor axis of the orbit (float, astronomical units) - eccentricity of the orbit (float) - inclination on the plane of the ecliptic (Angle) - longitude of the ascending node (Angle) - argument of the perihelion (Angle) |
Return type: | tuple |
Raises: | TypeError if input values are of wrong type. |
>>> epoch = Epoch(2065, 6, 24.0)
>>> l, a, e, i, ome, arg = Uranus.orbital_elements_mean_equinox(epoch)
>>> print(round(l, 6))
235.517526
>>> print(round(a, 8))
19.21844604
>>> print(round(e, 7))
0.0463634
>>> print(round(i, 6))
0.77372
>>> print(round(ome, 5))
74.34776
>>> print(round(arg, 6))
99.630865
This function computes the time of passage by the nodes (ascending or descending) of Uranus, nearest to the given epoch.
Parameters: |
|
---|---|
Returns: | Tuple containing: - Time of passage through the node (Epoch) - Radius vector when passing through the node (in AU, float) |
Return type: | tuple |
Raises: | TypeError if input values are of wrong type. |
>>> epoch = Epoch(2019, 1, 1)
>>> time, r = Uranus.passage_nodes(epoch)
>>> year, month, day = time.get_date()
>>> print(year)
2028
>>> print(month)
8
>>> print(round(day, 1))
23.2
>>> print(round(r, 4))
19.3201
This method computes the time of Perihelion (or Aphelion) closer to a given epoch.
Parameters: |
|
---|---|
Returns: | The epoch of the desired Perihelion (or Aphelion) |
Return type: | Epoch |
Raises: | TypeError if input values are of wrong type. |
Note
The solution provided by this method may have several days of error.
>>> epoch = Epoch(1880, 1, 1.0)
>>> e = Uranus.perihelion_aphelion(epoch)
>>> y, m, d = e.get_date()
>>> print(y)
1882
>>> print(m)
3
>>> print(int(d))
18
>>> epoch = Epoch(2090, 1, 1.0)
>>> e = Uranus.perihelion_aphelion(epoch, perihelion=False)
>>> y, m, d = e.get_date()
>>> print(y)
2092
>>> print(m)
11
>>> print(int(d))
22
This table contains Uranus’ periodic terms (all of them) from the planetary theory VSOP87 for the heliocentric latitude at the equinox of date (taken from the ‘D’ solution). In Meeus’ book a shortened version can be found in pages 448-449.
This table contains Uranus’ periodic terms (all of them) from the planetary theory VSOP87 for the heliocentric longitude at the equinox of date (taken from the ‘D’ solution). In Meeus’ book a shortened version can be found in pages 445-448.
This table contains Uranus’ periodic terms (all of them) from the planetary theory VSOP87 for the radius vector at the equinox of date (taken from the ‘D’ solution). In Meeus’ book a shortened version can be found in pages 449-451.